
Red Team Module 0:
Crash Course X86 Binaries
Introduction:
When you hear the word "binary" the first thing that might jump into your head are the numbers 1
and 0. Fundamentally, computers can understand two states: HIGH and LOW. When we write a
program in a language like c, high level instructions are transformed from something that can be
easily read by humans into something that can be executed by computers.

Background:
Modern operating systems use a type of binary called an executable to "execute" instructions:

1. Linux – ELF executable
2. Mac – MachO executable
3. Windows – EXE executable

For now we are only going to take a look at ELF executables We can easily reverse engineer these
files from the kali virtualmachines installed in BLUE-MOD-0.

Lets start by taking a look at a compiled program called “helloworld.c” by printing its contents to
standard out. At first glance what we get appears to be rather cryptic...

This is the ascii representation of the bytes that compose instructions in the file. As you may
imagine it doesn't make a lot of sense to reverse engineer binaries like this. Printing to our
terminal's standard out/using a regular text editor can cause our terminal emulator to start behaving
strange and even make sound. There is still some useful information we can extract from this
picture such as some of the strings like “Hello world this is SIT” that compose the file, but this is
probably done better with the linux command: strings.

To make our analysis better we can look at the binary “helloworld” from inside a hex editor. In this
case we will use the editor hte. This program allows us to not only look at the binary in hex, but
also to edit the program and make changes to instructions.

hte does not come packaged with Kali. We can however retrieve it from the Debian repositories
using the apt package manager. The following command should retrieve the binary:

sudo apt-get install ht

Surprisingly this package does not have the same name as its binary. You need to type hte instead of
ht to start it from a terminal.

Hte is a terminal based application. However, it doesn't always run well in gnome's terminal
emulator, I've had mixed results. If the formatting is giving you problems I recommend switching
ttys and then logging into a blank shell. This can be done in gnome by using ctrl+alt+F1. Lets go
ahead and open up the helloworld binary with hte helloworld.

This is better, but staring at a wall of hexadecimal numbers is still rather painful to look at. The
important concept to gather from this is that by ordering hexadecimal numbers in the right sequence
we get opcodes. These are instructions that tell our CPU what to do.

Fortunately for us, hte can also act as a disassembler. The purpose of a disassembler is to translate
op-codes back into assembly language. We can access hte's disassembly function using the space-
bar.

Excellent! Now we have a direct translation from Hex to assembly. Unfortunately the picture is
rather incomplete. In fact some translations don't make sense...

As a brief overview the left most column represents the first byte of an op-code's place in the file.
The second column on the left are the instruction's op-codes. The right hand side represents the
actual assembly instructions.

Take a look at the instruction next to 00000000 “jg 0x47” this
instruction means jump to the address 0x47 if greater than. But
why would even be jumping this early? We haven't even made
a comparison yet.

An elf file contains more than just instructions for a program.
In fact the actual program instructions are located in a different
segment of the program called the .text segment. The diagram
to the right shows the different segments of an elf file.

The first 34 bytes in our file are actually part of the ELF file
headers and don't contain any instructions written by the
programmer. There is a lot of information located here but not
instructions. The elf file headers define the entry point of the
program, the endianess of the program, and even whether or
not the program is a 32 bit or 64 bit executable. Check out the
Recommended Resources link 1 for more information.

Lets switch hte's mode into a more advanced mode that will recognize program and section headers.
Press the space bar again and select “- elf/image”

Wow! This is much better. Not only do we have a labeled <.text> section, but since this ELF file
isn't stripped we get a label where the main function begins as well.

You may have also noticed that the hex on the far left is no longer byte numbers in the file. A simple
program that prints “hello world this is SIT” is very unlikely to be 134 megabytes. In this mode of
hte, the disassembler is showing us where our text segment would be mapped to virtual memory.
We will talk more about what virtual memory is in the next module. Keep in mind we haven't
ACTUALLY put the program in ram yet since we haven't run the program. Right now the program
is just a sequence of bytes in a file.

Before we end this module lets take a look at how we can modify instructions using the ht editor.
hte has two different modes for patching binaries. There is the default mode which lets us modify
the actual hex values of the binary and there is “assembly mode” that allows us to to actually type in
assembly instructions (you can access this with ctrl+a). Lets try this out on a different binary called
“printsheep” shown below.

Lets try modifying this binary after its already been compiled. Instead of printing “I <3 sheep” three
times lets make it print 10 times.

hte printsheep

For changing instructions, its much easier to edit things from image mode. Lets go ahead and
change into that using spacebar.

You may have to scroll down (using page down key) until you find the main function like in the
picture above.

The trick now is to actually figure out what the assembly does. If this is your first time actually
taking a look at assembly the entire process can be incredibly overwhelming. Infact quite a few of
the instructions may not make sense until after RED-MOD-1 where we take a deeper look at
memory. To help you out we've included a file that annotates every line of the assembly. In this case
to get “I <3 sheep” to print 10 times we have to change the instruction cmp dword ptr [esp+1ch], 2
to cmp dword ptr [esp+1ch], 0ah

To do this press the F4 key to edit the hex.

We need to change the very last opcode from 02 to 0a the hex equivalent of 10. Then, push F2 to
save the file. Now when we run printsheep we should get the output below.

Exercises:
CHHHHHHALLENGE MODE – Work with your friends at your table to try and solve these entry
level binary challenges. As you move down the list the challenges will get harder!

Future Application:
In the next Module we will begin writing our own exploits for systems that use the x86 architecture.
In order to understand whats going on while exploiting a system, its critical to develop an
understanding of what a program is.

Recommended Resources:
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://sparksandflames.com/files/x86InstructionChart.html

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://sparksandflames.com/files/x86InstructionChart.html

This Module was written by Vincent Moscatello for the Organization: Student Infosec Team.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.

http://creativecommons.org/licenses/by-nc/4.0/

