
Red Team Module 2:
Buffer Overflows - Continued

Introduction:
In this module we are going are going to take a deeper look at buffer overflow exploits and how we
can use them to execute shellcode. We will also introduce some new tools that can stream line the
process such as msfvenom, pattern_create.rb, and pattern_offset.rb

Background:
Part 1: lets play with patterns
In the last module we introduced the concept of overwriting a saved return address by calculating its
position on the stack. The stack structure looked something like follows.

[Function parameters in reverse order] – [return address] – [base pointer] – [local variables]

In the Notes section we mentioned how the example in the last section was a bit contrived. When
we overwrote the contents of the stack we assumed that the space we had to overwrite was the size
of the array specified + the size of ebp. In the real world compilers will do what it takes to get a
program to run as fast as possible. Sometimes that process includes messy optimizations which may
run faster but use more memory. Lets take a look at a new program called exploitme.c compiled
without the flag -mpreferred-stack-boundary=2.

#include <stdio.h>
int main(){

char buffer[1337];
printf(“Enter your name: ”);
scanf(“%s”, buffer);

printf(“hello, %s how are you today?\n”, buffer);
}
When we run this program we are expecting the stack to look like the image below.

In this program the vulnerability occurs in the function scanf. The programmer did not limit the size
of the users input into the array “buffer.” lets generate the junk for our exploit. We have 1337
characters at 1 byte each + 4 bytes for ebp. Assuming our compiler made no optimizations, we
should only need to supply 1341 bytes of junk + 4 more to overwrite the return address. Lets go
ahead and give it a shot.

ruby -e 'print “A” * 1341 + “BBBB”' > exploit

We can feed our exploit to the program's standard input using the “<” operator.

Hmmm we didn't get any segmentation faults. The culprit here is gcc. Fortunately there is an
excellent tool provided in the metasploit framework that can help us determine the size of the buffer
for our exploit. Before we begin make sure you have core dumps enabled. They will become helpful
later.

ulimit -c unlimited

On kali linux, the script we want can be found here:

/usr/share/metasploit-framework/tools/pattern_create.rb

If you ever forget where the script is found, it can be easily located by running locate
pattern_create.rb from terminal.

We can give pattern_create.rb a large integer as a command line argument to get a pattern where
any four letters is a unique position in the string. This is more clear when you run the program. Lets
run the program with a command line parameter of 2000.

Yikes that's a bit terrifying to look at... and not especially useful when just printed to standard
output. Lets save it to a file and see what happens if we shove this rather large amount of data into
to the program.

/usr/share/metasploit-framework/tools/pattern_create.rb 2000 > exploit

exploitme < exploit

Success! We where able to to cause the program to segfault. The problem is we need to know
where. This is where core dumps are going to come in handy. Lets open up our core dump using
gdb to figure our where our program segfaults to.

Ah looks like the address 0x30744239 this translates back to 0tB9 in ascii characters. Instead of
counting through the bytes in our exploit file to find where this string is located, metasploit has
another program in a similar location that will automatically take our address and count the number
of junk bytes for us. Lets go ahead and give it a shot.

/usr/share/metasploit-framework/tools/pattern_offset.rb 30744239 2000

Wow there was an 8 byte difference between what we have have and what we initially predicted.
Lets go ahead and use ruby to generate our exploit like before but this time use the right amount of
junk.

ruby -e 'print “A” * 1349 + “BBBB”' > exploit

exploitme < exploit

gdb exploitme core

Excellent we achieved a segmentation fault at the address 0x42424242 we now know how to
manipulate eip. But since there isn't an explicit “win()” function for us this time where should we
tell eip to go?

Part 2: shellcode

Calling arbitrary functions is nice but sometimes we want to be able to inject our own instructions
into a running program. We can do this with something called shellcode. Since a program is simply
a sequence of bytes, if there are no security measures standing in our way, we should be able to
project our shellcode onto something like the stack and then point our instructional pointer to it.

Writing shellcode ourselves is a bit out of scope for this module but it will be covered later. For
now, lets use a handy tool provided by the metasploit framework called msfvenom to generate the
shellcode for us.

Msfvenom has quite a few payloads for Macosx, Windows, and Linux. You can list all the payloads
with msfvenom -l and running msfvennom without any command line arguments will provide a
useful help menu. For this tutorial we will use the the module located at linux/x86/exec.

msfvenom -f c -p linux/x86/exec CMD=/bin/sh > exploit

This shellcode will execute whatever shell command we have assigned to the variable CMD. In this
case we will be dropped into the linux shell “sh”. Each individual byte of the shellcode is prefixed
with “\x”. Lets modify the file “exploit” to print the actual bytes to standard output.

Lets compile the program, run it, and then verify that this is the correct payload from HTE.

hte payload

Eek looks like the payload we printed is not our entire shellcode. Why did this happen? It has to do
with the way the function printf() works. printf() will only print up to the first null terminated
character that it encounters. Now we are left with two options:

1. We can modify our script to print each individual character including the null character.
2. We can encode our shellcode with msfvenom in such a way that it removes the null-bits.

Lets take a look at the first option:

hte payload

It worked we got our entire shellcode to print to a file. Now that we have the raw bytes we can
easily inject it into our program.

The next step is to figure out where we want to actually store the shellcode. An excellent option for
binaries that don't make use of DEP is an environmental variable. You can export your shellcode to
an environmental variable by using the linux command export. In our case we can set it to
something obvious like:

export SHELLCODE=$(cat payload)

The most useful way to actually find the address of this environmental variable in memory is to
make use of core-dumps. Tacking on some NOPS (0x90 bit) can also dramatically improve your
chances of getting the shellcode to execute successfully. The important thing to remember is once
we control eip we have a considerable amount of freedom and are only held back by creativity.

Rambling:

There is more than one place you can actually store your shellcode. I only decided to mention
environmental variables because it is fairly predictable and decreases confusion. In some situations
having an exploit that is %100 reliable %100 of the time isn't always necessary. A very famous
tactic called stack smashing actually relies on guessing the position of the shellcode on the stack
over and over again until you finally get it right. Traditionally, you increase the probability you will
hit the right area by increasing the surface area of you exploit with nops.

There are other tactics such as return to libc/rop that are also extremely reliable. For most binaries
that run on modern operating systems (think windows 7 and later) actually executing shellcode on
the stack becomes relatively difficult thanks to DEP/ASLR. We will try and address some of these
issues during the presentation.

Another note is that msfvenom has the ability to just print the raw shellcode to standard out. The c
script we wrote to print the shellcode becomes rather useless. You can do that by setting the -f flag
to raw. As the author, I thought that it would be a good idea to help expose you as the reader to a
way you will see shellcode represented over and over again. In a future module we will be working
on exploiting remote services like socket servers. Having a way to export the shellcode so that it is
compatible with whatever language we are using becomes very helpful.

Ev3n moar Rambles:

It may seem like a fun idea at the time to make fun of a developer for making introducing potential
vulnerabilities in their code. But.. did you even notice the VERY dangerous programming mistake
made in one of the earlier pictures while we were trying to print the shellcode?

Its dangerous to print a buffer like this: printf(buffer)

We will talk about format string vulnerabilities in a later module.

Future Application:
Stack based buffer overflows are just one kind of vulnerability that can exist in a program. In the
real world anything we can use to hijack eip is fair game. In the next modules we will take a look at
some new exploitation methods for buffer overflows like return to libc/ROP and other common
vulnerabilities.

Recommended Resources:
http://insecure.org/stf/smashstack.html

If your into this stuff I highly recommend the book:
Bug Hunter's Diary – http://www.amazon.com/Bug-Hunters-Diary-Software-
Security/dp/1593273851

It is a little advanced but covers some excellent material and gives good explanations without
feeding your script kiddiness with the actual exploits.

This Module was written by Vincent Moscatello for the Organization: Student Infosec Team.

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.

http://insecure.org/stf/smashstack.html
http://creativecommons.org/licenses/by-nc/4.0/
http://www.amazon.com/Bug-Hunters-Diary-Software-Security/dp/1593273851
http://www.amazon.com/Bug-Hunters-Diary-Software-Security/dp/1593273851

